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Synchronization of fractional order chaotic systems
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The chaotic dynamics of fractional order systems began to attract much attention in recent years. In this
Brief Report, we study the master-slave synchronization of fractional order chaotic systems. It is shown that
fractional order chaotic systems can also be synchronized.
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Fractional calculus is a 300-year-old topic. Although
has a long mathematical history, the applications of fr
tional calculus to physics and engineering are just a rec
focus of interest@1,2#. Many systems are known to displa
fractional order dynamics, such as viscoelastic syste
@3–5#, dielectric polarization@6#, electrode-electrolyte polar
ization @7#, and electromagnetic waves@8#. More recently,
many authors began to investigate the chaotic dynamic
fractional order dynamical systems@9–17#. In Ref. @9#, it has
been shown that the fractional order Chua’s system of o
as low as 2.7 can produce a chaotic attractor. In Ref.@10#, it
has been shown that nonautonomous Duffing systems o
der less than 2 can still behave in a chaotic manner. In R
@11#, chaotic behaviors of the fractional order ‘‘jerk’’ mode
was studied, in which chaotic attractor was obtained w
system orders as low as 2.1, and in Ref.@12# the chaos con-
trol of this fractional order chaotic system was reported.
Ref. @13#, chaotic behavior of the fractional order Loren
system was studied, but unfortunately, the results prese
in that paper are not correct. In Refs.@14# and@15#, bifurca-
tion and chaotic dynamics of the fractional order cellu
neural networks were studied. In Ref.@16#, chaos and hyper
chaos in the fractional order Ro¨ssler equations were studie
in which we showed that chaos can exist in the fractio
order Rössler equation with order as low as 2.4, and hyp
chaos exists in the fractional order Ro¨ssler hyperchaos equa
tion with order as low as 3.8. In Ref.@17#, we have studied
the chaotic behavior and its control in the fractional ord
Chen system. In Ref.@18#, the author presents a broad revie
of existing models of fractional kinetics and their connecti
to dynamical models, phase space topology, and other c
acteristics of chaos.

On the other hand, synchronization of chaotic systems
attracted much attention@19# since the seminal paper b
Pecora and Carroll@20#. In this Brief Report, we study the
synchronization of fractional order chaotic systems. T
analysis of fractional order systems is by no means triv
So, we will numerically investigate this topic here.

There are many definitions of fractional derivatives@1#.
Perhaps the best known one is the Riemann-Liouville d
nition, which is given by

da f ~ t !

dta
5

1

G~n2a!

dn

dtn
E

0

t f ~t!

~ t2t!a2n11
dt ~1!
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where G(•) is the gamma function andn21<a,n. The
geometric and physical interpretation of the fractional d
rivatives was given in Ref.@21#. Upon considering the initial
conditions to be zero, the Laplace transform of the Riema
Liouville fractional derivative is L$da f (t)/dta%
5saL$ f (t)%. So, the fractional integral operator of ord
‘‘ a ’’ can be represented by the transfer functionF(s)
51/sa.

The standard definition of the fractional differintegral d
not allow direct implementation of the fractional operators
time-domain simulations. An efficient method to circumve
this problem is to approximate the fractional operators
using the standard integer order operators. In the follow
simulations, we will use the approximation method propos
in Ref. @22#, which was also adopted in@9,11,14–17#. In
Table 1 of Ref.@9#, the authors gave approximations for 1/sq

with q50.1–0.9 in step 0.1 with errors of approximately
dB. We will use these approximations in our following sim
lations.

Consider the master-slave synchronization scheme of
autonomousn-dimensional fractional order chaotic system

M :
dax

dta
5 f ~x!,

S:
day

dta
5 f ~y!1cG~x2y! ~2!

FIG. 1. Phase plot of the fractional order Chua’s system w
a50.9.
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with the master systemM and the slave systemS. Wherea
.0 is the fractional order, with which the individua
dynamical systems are chaotic,c.0 is the coupling
strength, andGPRn3n is a constant 0–1 matrix linking th
coupling variables. For simplicity, we assumeG
5diag(r 1 ,r 2 , . . . ,r n) is a diagonal matrix. If there is a cou
pling between thei th state variable of the two coupled ch
otic systems, thenr i51; otherwise,r i50. Define the error
signal ase5x2y, the aim of the synchronization scheme
to design the coupling strength such thatie(t)i→0 as t
→`. This scheme is similar to the master-slave synchro
zation of classical integer-order chaotic systems.

Next, we numerically study the synchronization of fra
tional order chaotic systems via two examples. We first c
sider the fractional order Chua’s system@9#

dax

dta
5aFy1

x22x3

7 G ,
day

dta
5x2y1z, ~3!

daz

dta
52

100

7
y,

whena>0.9, this system can produce chaotic solutions@9#.
Particularly, whena50.9 anda512.75, the fractional orde
Chua’s system is chaotic. The phase plot ofx andz is shown
in Fig. 1.

We let G5diag(1,0,0), which implies that only the firs
variablex is used for coupling the two fractional order ch
otic systems. To obtain a critical value ofc to make the two
systems synchronized, we continuously increase the coup
strengthc, from c50, in step 0.5. Whenc,4, no synchro-

FIG. 2. Synchronization error of the fractional order Chua’s s
tems witha50.9: ~a! c54, ~b! c57.

FIG. 3. Synchronization error of the integer order Chua’s s
tems:~a! c54, ~b! c57.
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nous phenomenon is observed. Whenc54, the curve of the
synchronization errorJ(t)5 log(ie(t)i) is shown in Fig. 2~a!,
which indicates that the master-slave synchronization
achieved. In Fig. 2~b!, we show the curve of the synchron
zation error whenc57, in which the synchronization effec
is better than that ofc54.

For the purpose of comparison, we also plot the curves
synchronization error of the integer order Chua’s syste
(a59.5) in Fig. 3. Comparing Fig. 2 with Fig. 3, we ca
know that the synchronization rate of the fractional ord
Chua’s systems is slower than its integer order counterp

We next consider the fractional order Ro¨ssler system@16#

dax

dta
52~y1z!,

day

dta
5x1ay, ~4!

daz

dta
50.21z~x210!,

when a50.9 anda50.4, the above system is chaotic. Th
phase diagram of the chaotic attractor is shown in Fig. 4

We also letG5diag(1,0,0), and do the similar simula
tions as in the above example. When the coupling stren
c50.5, the two fractional Ro¨ssler systems achieve synchr
nization. The curve of the synchronization error of the fra
tional order Ro¨ssler system is shown in Fig. 5~a!. In Fig.
5~b!, we also plot the curve of the synchronization error
the integer order Ro¨ssler systems (a50.165). From Fig. 5,

-

-

FIG. 4. Phase plot of the fractional order Ro¨ssler system with
a50.9.

FIG. 5. The curves of synchronization error:~a! the fractional
order Rössler systems witha50.9 andc50.5; ~b! the integer order
Rössler systems withc50.5.
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we know that the synchronization rate of the fractional or
Rössler systems is also slightly slower than its integ
counterpart.

We have also tested the synchronization scheme~2! on
several other fractional order chaotic systems@23#. Limited
to the length of this Brief Report, we omit these results he

In summary, in this Brief Report, we have studied t
master-slave synchronization of fractional order chaotic s
tems. To the best of our knowledge, this is the first report
the synchronization of fractional order dynamical system
We have shown that fractional order chaotic systems can
u-
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lts

06720
r
r

.

s-
n
.

be

synchronized by utilizing the similar scheme as that of th
integer order counterparts.

Future works regarding this topic include the investig
tion of some other types of synchronization of fractional o
der chaotic systems, such as the phase synchronization@24#
and the projective synchronization@25#, as well as the syn-
chronization of fractional order hyperchaotic systems@16#.

We acknowledge support from the National Natural S
ence Foundation of China under Grant No. 60271019 and
Youth Science and Technology Foundation of UESTC un
Grant No. YF020207.
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