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Synchronization of fractional order chaotic systems
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The chaotic dynamics of fractional order systems began to attract much attention in recent years. In this
Brief Report, we study the master-slave synchronization of fractional order chaotic systems. It is shown that
fractional order chaotic systems can also be synchronized.
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Fractional calculus is a 300-year-old topic. Although it whereI'(-) is the gamma function and—1<a<n. The
has a long mathematical history, the applications of fracgeometric and physical interpretation of the fractional de-
tional calculus to physics and engineering are just a recentvatives was given in Ref21]. Upon considering the initial
focus of interes{1,2]. Many systems are known to display conditions to be zero, the Laplace transform of the Riemann-
fractional order dynamics, such as viscoelastic systemkiouville fractional derivative is L{d“f(t)/dt*}
[3-5], dielectric polarizatiori6], electrode-electrolyte polar- =s*L{f(t)}. So, the fractional integral operator of order
ization [7], and electromagnetic wavg8]. More recently, “«a” can be represented by the transfer functii(s)
many authors began to investigate the chaotic dynamics of 1/s*,
fractional order dynamical systerf@-17]. In Ref.[9], it has The standard definition of the fractional differintegral do
been shown that the fractional order Chua’s system of ordetiot allow direct implementation of the fractional operators in
as low as 2.7 can produce a chaotic attractor. In Ref], it time-domain simulations. An efficient method to circumvent
has been shown that nonautonomous Duffing systems of othis problem is to approximate the fractional operators by
der less than 2 can still behave in a chaotic manner. In Relising the standard integer order operators. In the following
[11], chaotic behaviors of the fractional order “jerk” model simulations, we will use the approximation method proposed
was studied, in which chaotic attractor was obtained within Ref. [22], which was also adopted i[98,11,14—17. In
system orders as low as 2.1, and in R&2] the chaos con- Table 1 of Ref[9], the authors gave approximations fos®./
trol of this fractional order chaotic system was reported. Inwith g=0.1-0.9 in step 0.1 with errors of approximately 2
Ref. [13], chaotic behavior of the fractional order Lorenz dB. We will use these approximations in our following simu-
system was studied, but unfortunately, the results presentdgtions.
in that paper are not correct. In Refd4] and[15], bifurca- Consider the master-slave synchronization scheme of two

tion and chaotic dynamics of the fractional order cellularautonomousi-dimensional fractional order chaotic systems
neural networks were studied. In REE6], chaos and hyper-

chaos in the fractional order Rsler equations were studied, N

in which we showed that chaos can exist in the fractional M_d_x £(x)
order R®sler equation with order as low as 2.4, and hyper- T dte '
chaos exists in the fractional order $&ber hyperchaos equa-

tion with order as low as 3.8. In Ref17], we have studied

the chaotic behavior and its control in the fractional order d%y
Chen system. In Ref18], the author presents a broad review S ae fly)+cl'(x=y) 2
of existing models of fractional kinetics and their connection

to dynamical models, phase space topology, and other char-

acteristics of chaos. 18

On the other hand, synchronization of chaotic systems has 11
attracted much attentiofil9] since the seminal paper by
Pecora and Carro[l20]. In this Brief Report, we study the 0.5¢
synchronization of fractional order chaotic systems. The N ol
analysis of fractional order systems is by no means ftrivial.
So, we will numerically investigate this topic here. 05}

There are many definitions of fractional derivatiVidg.
Perhaps the best known one is the Riemann-Liouville defi- -1t
nition, which is given by 15

| -05 0 0.5 1
X
o n
df(t) = ! d" [ f(7) (1) FIG. 1. Phase plot of the fractional order Chua’s system with

dt*  T(n—a) dt")o (t—r)en+1 ’ =0.9.
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FIG. 2. Synchronization error of the fractional order Chua’s sys- —20 20 X

tems witha=0.9: (a) c=4, (b) c=7. FIG. 4. Phase plot of the fractional order ®¢ter system with

«=0.9.
with the master systeril and the slave systel® Where«
>0 is the fractional order, with which the individual g s phenomenon is observed. When4, the curve of the
dynamical SYSteTXSH are chaotic>0 is the coupling gynchronization errad(t) = log(|e(t)]) is shown in Fig. 2a),
strength, and’ e R™" is a constant 0—1 matrix linking the \yhich indicates that the master-slave synchronization is
coupling variables. For simplicity, we assumd’  gchieved. In Fig. @), we show the curve of the synchroni-

=diag(ry,ra, .. . rpn) is a diagonal matrix. If there is & cou-  zation error wherc=7, in which the synchronization effect
pling between théth state variable of the two coupled cha- ig petter than that of=4.
otic systems, them;=1; otherwiser;=0. Define the error For the purpose of comparison, we also plot the curves of

signal ase=x—y, the aim of the synchronization scheme is synchronization error of the integer order Chua’s systems
to design the coupling strength such the(t)[|—0 ast  (a=9.5) in Fig. 3. Comparing Fig. 2 with Fig. 3, we can

—. This scheme is similar to the master-slave synchronixnow that the synchronization rate of the fractional order
zation of classical integer-order chaotic systems. Chua’s systems is slower than its integer order counterpart.

~ Next, we numerically study the synchronization of frac- e next consider the fractional order $&er systenj16]
tional order chaotic systems via two examples. We first con-

sider the fractional order Chua’s systéfi

d*x (y+2)
[ y Z ,
d*x { +x—2x3 dt”
g o 70
=x+ay, 4
d“y_x_ +z (3 de® ’ “
dte yre
d"z_
daZ_ 100 @—O.Z-FZ(X—].O),
dte 77

when a=0.9 anda=0.4, the above system is chaotic. The

when«=0.9, this system can produce chaotic solutifls  phase diagram of the chaotic attractor is shown in Fig. 4.
Particularly, whemy= 0.9 anda=12.75, the fractional order We also letl’=diag(1,0,0), and do the similar simula-
Chua’s system is chaotic. The phase plokaindzis shown tions as in the above example. When the coupling strength
in Fig. 1. c=0.5, the two fractional Resler systems achieve synchro-

We letT"=diag(1,0,0), which implies that only the first nization. The curve of the synchronization error of the frac-
variablex is used for coupling the two fractional order cha- tional order Rasler system is shown in Fig(&. In Fig.
otic systems. To obtain a critical value oto make the two  5(b), we also plot the curve of the synchronization error of
systems synchronized, we continuously increase the couplirtipe integer order Rssler systemsa=0.165). From Fig. 5,
strengthc, from c=0, in step 0.5. Wher<4, no synchro-
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FIG. 3. Synchronization error of the integer order Chua’s sys-order R@sler systems witar=0.9 andc=0.5; (b) the integer order
tems:(a) c=4, (b) c=7. Rossler systems witle=0.5.
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we know that the synchronization rate of the fractional ordersynchronized by utilizing the similar scheme as that of their

Rossler systems is also slightly slower than its integerinteger order counterparts.

counterpart. Future works regarding this topic include the investiga-
We have also tested the synchronization sch¢geon 0N of some other types of synchronization of fractional or-

several other fractional order chaotic systei@3]. Limited ~ der chaotic systems, such as the phase synchroniZ@#in
to the length of this Brief Report, we omit these results here@d the projective synchronizati¢@s], as well as the syn-

In summary, in this Brief Report, we have studied thechronlzanon of fractional order hyperchaotic systdibg].
master-slave synchronization of fractional order chaotic sys- We acknowledge support from the National Natural Sci-
tems. To the best of our knowledge, this is the first report orence Foundation of China under Grant No. 60271019 and the
the synchronization of fractional order dynamical systemsYouth Science and Technology Foundation of UESTC under
We have shown that fractional order chaotic systems can b&rant No. YF020207.
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